Capítulo 7 Texturas

Computação Gráfica - Vol. 2 - Cap. 7

1

Capítulo 7

- 7.1. Coeficiente de Hurst
- 7.2. Coeficientes de Variação Espacial

7.3. Momentos de Intensidades de Regiões ou Medidas de Primeira Ordem

7.4. Medidas de Segunda Ordem

DEFINIÇÕES

• Padrão visual que possui algumas propriedades de homogeneidade que não resultam simplesmente de uma cor ou intensidade.

• Constituída de elementos mutuamente relacionados: a primitiva de textura dependente de escala.

•Composta de um grande número de elementos similares mais ou menos ordenados.

•Relacionada com coeficientes de uniformidade, densidade, aspereza, regularidade, intensidade, dentre outros, oriundos da probabilidade de ocorrência de variações tonais.

DEFINIÇÕES

- •Descritas por medidas que quantificam suas propriedades de suavidade, rugosidade e regularidade.
- •Características estatísticas ou propriedades estruturais locais constantes, com pouca variação ou aproximadamente periódicas.
- •Relacionadas à variação de intensidade luminosa em partes das imagens.

APLICAÇÕES

- •Segmentação ou divisão de uma imagem em regiões.
- •Descrição e extração de características.
- •Classificação e rotulação de uma região.
- •Análise de forma.
- •Réplica.

Figura 7.1 - Exemplos de texturas naturais (a,b,c,d,h) e artificiais (e,f,g).

7.1. Coeficiente de Hurst

É uma aproximação da DF:

$$D = \frac{\ln N}{\ln\left(\frac{1}{r}\right)}$$

(7.2)

	0	1	2	3	4	5	б
0	85	70	86	92	60	102	202
1	91	81	98	113	86	119	189
2	96	86	102	107	74	107	194
3	101	91	113	107	83	118	198
4	99	68	107	107	76	108	194
S	107	94	9 3	115	83	115	198
6	94	98	98	107	81	115	194

Figura 7.3 - Região de 7x7 pixels para cálculo do coeficiente de Hurst (Parker, 1997).

<u> </u>	<u>√13</u>	√1 0	3	√10	<u>√13</u>	<u> </u>
<u>√13</u>	√8	√5	2	√5	√8	<u>√13</u>
√10	√5	√2	1	√2	√5	√ 10
3	2	1	0	1	2	3
√10	√5	√2	1	√2	√5	√10
<u>√13</u>	√8	√5	2	√5	√8	√13
<u>~18</u>	$\sqrt{13}$	√10	3	√ 10	<u>√13</u>	

Figura 7.4 - Oito grupos de *pixels* correspondentes às distâncias.

Tabela 7.1 - Distância e diferença de nível de cinza para região da Figura 7.3.

Distância (d)	ln d	Diferença de nível de cinza (A)	ln (4)
$d \rightrightarrows$	0.000	113-83=30	3.401
$d = \sqrt{2}$	0.346	113-74=39	3.663
d = 2	0.693	118-74=44	3.784
$d = \sqrt{5}$	0.804	118-68=50	3.912
$d = \sqrt{8}$	1.039	119-68=51	3.931
d = 3	1.098	198-68=130	4.867
$d = \sqrt{10}$	1.151	198-60=138	4.297
$d = \sqrt{13}$	1.282	198-60=138	4.297
$d = \sqrt{18}$	1,445	202-60=142	4.955

Computação Gráfica - Vol. 2 - Cap. 7

Interações	ln d	$\ln g$	$\ln d \ln g$	$\left \ln d\right ^2$
1	0,00000	3,40120	0,00000	0,00000
2	0,34657	3,66356	1,26969	0,12011
3	0,69315	3,78419	2,62300	0,48045
4	0,80472	3,91202	3,14808	0,64757
5	1,03972	3,93183	4,08800	1,08102
6	1,09861	4,86753	5,34753	1,20695
7	1,15129	4,92725	5,67271	1,32547
8	1,28247	4,92725	6,31908	1,64474
9	1,44519	4,95583	7,16209	2,08856
I	7,86173	38,37067	35,63019	8,59489
1 /n	0,874	4,263		
n	9		-	

Tabela 7.2 - Dados para cálculo da regressão linear.

A reta neste caso tem a equação: y = 1,2229x+3,1952. **Coeficiente de Hurst:** inclinação da reta, b=1,2229.

7.2. Coeficientes de Variação Espacial

Coeficiente de variação:

$$Cv = \frac{\sigma}{x}.100$$

Coeficiente de variação espacial da classe:

$$CVE = \frac{ArcTang\left(\frac{\bar{x}}{CV}\right)\pi}{180}\sqrt{x^2 + CV^2}$$
(7.9)

Computação Gráfica - Vol. 2 - Cap. 7

(7.8)

Tabela 7.3 - Dados para cálculo do CVE.

Dict	Média	CV Classo	CVE	Média CVE	CV CVE	CVE
DISI.	Classe	CV Classe	Classe	classe	classe	Textura
1,000	102,500	11,241	150,709			
1,414	89,750	16,571	126,698			
2,000	109,250	9,781	162,502			
2,236	91,125	13,667	131,022			
2,828	102,250	15,173	147,145	154,522	12,605	230,910
3,000	124,500	34,353	168,101			
3,162	113,500	42,245	147,082			
3,606	121,250	35,921	162,219			
4,243	143,750	37,855	195,223			

Aplicação:

(a) (b) (c)

Figura 7.5. Exemplo de uso do CVE: (a) Melanoma; (b) Segmentação considerando a área interior e (c) Localização do contorno ampliada.

7.3. Momentos de Intensidades de Regiões ou Medidas de Primeira Ordem

Baseados em estatísticas obtidas considerando uma janela móvel com o *pixel* central circundado por *pixels* adjacentes. • *n*-ésimo momento do histograma de uma imagem:

$$\mu_{n}(z) = \sum_{i=1}^{L} (z_{i} - m)^{n} p(z_{i})$$

$$m = \sum_{i=1}^{L} z_{i} p(z_{i})$$
(7.10)
(7.11)

• suavidade relativa *R* da textura

$$R = 1 - \frac{1}{1 + \sigma^2(z)}$$
(7.12)

• obliquidade

$$v = \frac{\mu_3}{\sigma^3(z)}$$
 (7.13)

• curtose

$$\kappa = \frac{\mu_4}{\sigma^4(z)} - 3$$
 (7.14)

7.4. Medidas de Segunda Ordem

7.4.1. Matrizes de Co-ocorrência

7.4.2. Descritores de Textura de Haralick

7.4.3 Funções de Autocorrelação

7.4.4 – Descritores de Textura baseados nos Histogramas de Soma e Diferenças

7.4.1. Matrizes de Coocorrência

Pode ser associada a:

•ângulo (q);

distância (d) entre os pixels (p(i, j, d, q);

•forma de deslocamentos na horizontal e vertical (p(i,j), Dx, Dy)).

Figura 7.6 – Operador $p(i, j, d, \theta)$.

Tabela 7.4 – Probabilidades possíveis para "Listras horizontais" – vizinhança de 1 *pixel*.

$p(i, j, d=1, \theta=0^{\circ})$		$p(i, j, d=1, \theta = 90^{\circ})$		$p(i, j, d=1, \theta=45^{\circ})$		$p(i, j, d=1, \theta=135^{\circ})$	
ou $P(i,j) \Delta$	$x=1, \Delta y=0$	ou $P(i,j) \Delta$	$x=0$, $\Delta y=1$	ou $P(i,j)$ Δ	$x=1, \Delta y=1$	ou $P(i,j) \Delta$	$x=-1, \Delta y=1$
0,5	0	0,25	0,25	0,25	0,25	0,25	0,25
0	0,5	0,25	0,25	0,25	0,25	0,25	0,25

Tabela 7.5 – Probabilidades possíveis para "Listras horizontais" – vizinhança de 2 *pixels*.

<i>p</i> (i, j, d=2	$, \theta = 0^{\circ}$) ou	<i>p</i> (i, j, d=2,	$\theta = 90^{\circ}$)	<i>p</i> (i, j, d=	=2, $\theta = 45^{\circ}$)	<i>p</i> (i, j, d=2	2, $\theta = 135^{\circ}$)
$P(i,j) \Delta x = 2$	2, ∆ y=0	ou $P(i,j)$ Δ	$x=0, \Delta y=2$	ou $P(i,j)$ Δ	$x=2, \Delta y=2$	ou $P(i,j)$ Δ	$x=-2, \Delta y=2$
0,5	0	0	0,5	0	0,5	0	0,5
0	0,5	0,5	0	0,5	0	0,5	0

Considere:

- •*I (N, M)* uma imagem quantizada em *G* níveis de cinza.
- •*I* é uma matrix *G*x*G*.

•Cada elemento da matriz é a função que designa a probabilidade de ocorrência simultânea de dois nível de cinza i, j = 0...G-1 para pares de *pixels* nas direções e distâncias especificadas.

•A informação textural é caracterizada pela matriz de freqüência relativa p(i, j, d, q).

Assim:

- Percorre-se a imagem na forma descrita pelo operador $p(i, j, d, \theta)$ ou $P(i,j) \Delta x, \Delta y$.
- As freqüências relativas ou as probabilidades são obtidas dividindo-se os valores obtidos pelo número de ocorrências totais.
- A matriz de co-ocorrência é obtida dividindo-se cada elemento de $a_{i,j}$ pelo número de pares de pontos na imagem que satisfaça $P(d, \theta)$:

$$p(i, j, d, q) = P(i, j) Dx, Dy = a_{i,j}/n$$
 (7.15)

onde: $n = \sum_{i,j} a_{i,j}$.

Matriz de ocorrência de tons de cinza

Figura 7.7 - Matriz de co-ocorrência de tons de cinza.

7.4.2. Descritores de Textura de Haralick

Tabela 7.7 - Descritores de Textura baseados nas matrizes de coocorrência.

Característica	Descrição	Fórmula Matemática
Homogeneidade	Distribuição de <i>pixels</i> .	$\sum_{i} \sum_{j} \frac{p(i, j)}{(1 + i - j)}$
Probabilidade Máxima	Indica a direção mais importante da textura a ser examinada.	$\max_{i,j} p(i,j)$
Entropia	Mede a informação contida em p, muitos valores nulos representam pouca informação.	$-\sum_{i}\sum_{j} p(i,j)\log_2 p(i,j)$

Tabela 7.7 - Descritores de Textura baseados nas matrizes de coocorrência (continuação).

Momento de diferenças ordem <i>k</i>	Distorção da imagem. Este descritor apresenta valores pequenos se <i>p</i> tiver maiores valores na diagonal principal.	$\sum_{i} \sum_{j} (i - j)^{k} p(i, j)$
Momento inverso de diferenças de ordem <i>k</i>	Inverso de contraste. Este descritor apresenta valores maiores pequenos se <i>p</i> tiver pequenos valores na diagonal principal.	$\sum_{i} \sum_{j} \frac{p(i, j)}{(i - j)^{k}}$
Energia ou Uniformidade	Retorna a soma dos elementos elevados ao quadrado dentro da matriz de co-ocorrência de tons de cinza. Faixa de valores possíveis: 0 a 1. A energia possui valor 1 para uma imagem constante (mesmo tom de cinza em toda a sua extensão).	$\sum_{i} \sum_{j} p^{2}(i, j)$

Tabela 7.7 - Descritores de Textura baseados nas matrizes de coocorrência (continuação).

Variância ou Contraste	Retorna uma medida do contraste entre as intensidades de um <i>pixel</i> analisado e do <i>pixel</i> vizinho. A comparação é realizada em todos os pixels da imagem. Para uma imagem constante (mesmo tom de cinza em toda a extensão), o contraste é 0 (zero). Contraste da imagem corresponde ao Momento de ordem 2.	$\sum_{i} \sum_{j} (i - j)^2 p(i, j)$
Variância Inversa	Inverso de contraste.	$\sum_{i} \sum_{j} \frac{p(i,j)}{(i-j)^2}, i \neq j$

Tabela 7.7 - Descritores de Textura baseados nas matrizes de coocorrência (continuação).

Correlação	Retorna uma medida de quão correlacionado está um <i>pixel</i> com o seu vizinho. A comparação é realizada em todos os <i>pixels</i> da imagem. Faixa de valores possíveis: -1 a 1. A correlação é 1 para uma imagem totalmente correlacionada ou -1 para uma completamente descorrelacionada.	$\frac{1}{\left(\sigma_{i}\sigma_{j}\right)}\sum_{i}\sum_{j}(i-\mu_{i})(j-\mu_{j})p(i,j)$ Onde: ^[] representa o desvio padrão e µ a média
Homogeneidade	Retorna um valor que representa a proximidade da distribuição dos elementos em relação à diagonal da matriz de co-ocorrência dos tons de cinza. Faixa de valores possíveis: 0 a 1. Um valor de Homogeneidade 1 representa uma matriz diagonal de co-ocorrência de tons de cinza.	$\sum_{i} \sum_{j} \frac{p(i,j)}{1+ i-j }$

Figura 7.8 - Texturas naturais monocromática. (a) Textura 1 -Entropia = 5.8766. (b) Textura 2 - Entropia = 5.9851. (c) Textura 3 - Entropia =6.2731.

Figura 7.9 - Gráfico de Correlação x Vizinhança da: (a) Textura 1; (b) Textura 2 e (c) Textura 3.

Figura 7.10 – Texturas de Classes Desconhecidas: (a) E = 6.0881; (b) E = 5.1305 e (c) E = 6.1882.

Figura 7.11 – Gráficos de Correlação x Vizinhança.

7.4.3 Funções de Autocorrelação

A autocorrelação de uma imagem I(r,c), ou a correlação da imagem com ela mesma deslocada em linhas e colunas de (dr,dc), I(r+dr,c+dc), pode ser utilizada para detectar padrões repetitivos nos elementos de uma textura.

$$\rho\left(dr,dc\right) = \frac{\sum_{r=0}^{N} \sum_{c=0}^{N} I(r,c) \ I(r+dr,c+dc)}{\sum_{r=0}^{N} \sum_{c=0}^{N} I^{2}(r,c)} = \frac{I(r,c) \ I_{d}(r,c)}{I(r,c) \ I(r,c)}$$
(7.16)

7.4.4 – Descritores de Textura baseados nos Histogramas de Soma e Diferenças

$$S(di,dj) = (i+di, j+dj) + (i, j)$$
(7.17)
$$D(di,dj) = (i+di, j+dj) - (i, j)$$
(7.18)

Histograma Soma di=0, dj=1 Histograma Diferença di=0, dj=1 Figura 7.12 – Histogramas soma e diferença da imagem "Listras Horizontais".

7.5 - Reconhecimento de texturas por LZW

Para texturas o algoritmo LZW usa um dicionário inicial de texturas que compõem uma base de características identificadoras para cada um dos tipos de textura a serem analisados futuramente, antes de efetivamente iniciar o processo de classificação das texturas. Os dicionários podem ser subdivididos em:

- •1- Horizontal (H_n) : percorre-se a imagem linha a linha.
- •2- Vertical (V_n) : percorre-se a imagem coluna a coluna.

Figura 7.13 – Percurso do algoritmo LZW.

Dicionário:

- 00 dois pixels pretos
- 01 pixel preto seguindo de branco
- 10 *pixel* branco seguindo de preto
- 11 dois *pixels* brancos

Reconhecimento de texturas:

•Treinamento.

•Classificação.

Classificação:

É calculada a taxa de codificação (r_i) a partir dos dicionários horizontal (h_i) e vertical (v_i) , para cada uma dessas codificações.

$$r_i = \frac{h_i + v_i}{2}$$

7.6. Dimensão Fractal

7.6.1. Estimando a Dimensão Fractal de Imagens Binárias

7.6.2. Estimando a Dimensão Fractal de Imagens em Escala de Cinza

7.6.1. Estimando a Dimensão Fractal de Imagens Binárias

O teorema da **contagem de caixas** (*Box Counting Theorem*) oferece um método simples para estimar a dimensão fractal de imagens binárias (2D).

Sobre a imagem é realizada uma contagem do número de "quadrados" de área N_n (A) de lado $1/2^n$ o qual "cobre" A:

$$DF(A) = \lim_{n \to \infty} \frac{Log(N_n(A))}{Log(2^n)}$$
(7.19)

Figura 7.14 - Divisão recursiva da imagem triângulo de Sierpinsky.

Siorningly						
n	$N_n(A)$	2^{100}	$log N_n$ (A)	$log 2^n$		
1	4	2	1,386	0,693		
2	12	4	2,484	1,386		
3	36	8	3,583	2,079		
4	108	16	4,682	2,772		
5	324	32	5,780	3,465		
6	972	64	6,879	4,158		

Tabela 7.8 - Cálculo experimental da DF do triângulo de

Figura 7.15 - Gráfico de log ($N_n(A)$) × log (2ⁿ).

Computação Gráfica - Vol. 2 - Cap. 7

7.6.2. Estimando a Dimensão Fractal de Imagens em Escala de Cinza

7.6.2.1. Método Box-Counting (BC)

7.6.2.2. Método Differential Box-Counting (DBC)

7.6.2.3. Método Differential Box-Counting Modificado (MDBC)

7.6.2.4. Método da Contagem de D-Cubos (CDC)

7.6.2.1. Método Box-Counting (BC)

Figura 7.16 - Imagem Original e como objeto ou superfície 3D.

Figura 7.17 - Contagem de "caixas".

7.6.2.2. Método *Differential Box-Counting* (DBC)

A superfície de uma imagem em níveis de cinza é considerada com espessura $2 \in$ ("cobertor").

A área da superfície é igual ao volume ocupado pelo "cobertor" dividido por $2 \in$.

O "cobertor" é envolvido e aproximado por sua superfície superior u e a superfície inferior b.

$$u_{\epsilon} = max \{ u_{\epsilon-1}(i,j) + 1, max \ u_{\epsilon-1}(m,n) \} | (m,n) - (i,j) \} | (m,n) - (7.20)$$

$$b_{\epsilon} = max \{ b_{\epsilon-1}(i,j) + 1, min \ b_{\epsilon-1}(m,n) \} |(m,n) - (i,j)| \le 1$$
(7.21)

onde |(m, n) - (i, j)| é a distância entre os *pixels* (m, n) de uma imagem, seus vizinhos (i, j) que distam de (m, n) no máximo 1.

Figura 7.18 - Exemplo de limites superior e inferior do "cobertor" em diversas resoluções.

A área da superfície fractal se comporta de acordo com a equação:

$$A(\epsilon) = F \epsilon^{2-D} \tag{7.22}$$

Obtem-se DF através do ajuste de mínimos quadrados linear no gráfico de $A(\in)$ versus \in (escala log-log) a partir da equação 7.22, obtendo-se uma linha com inclinação 2 - D.

O método DBC introduz esse conceito na equação 7.20, computando adequadamente $N_n(A)$.

Seja k o nível de cinza mínimo da imagem na grade (i,j), e l o nível de cinza máximo da imagem na grade $(i, j)^n$, na *n*-ésima interação, então a aproximação DBC é a espessura geral na grade (i, j).

$$n_n(i,j) = l - k + 1$$
 (7.23)

Fazendo a soma das contribuições de todas as grades na interação *n* tem-se:

$$N_n(A) = \sum n \ (i,j) \tag{7.24}$$

A DF pode ser estimada através do ajuste linear de mínimos quadrados no gráfico de log $(N_n(A)) \times log(1/2^n)$ contado para diferentes dimensões das caixas.

7.6.2.3. Método *Differential Box-Counting* Modificado (MDBC)

$$DF_n = \frac{Log(N_n)}{Log(2^n)}$$

onde N_n é o número *boxes* que interceptam a imagem representada:

$$N_{n} = \sum n_{n}(i,j)$$
(7.26)
$$N_{n}(i,j) = \frac{\text{inteiro} \left(Cinza _Maximo(i,j) - Cinza _minimo(i,j)\right)}{s} + 1$$
(7.27)

Computação Gráfica - Vol. 2 - Cap. 7

(7.25)

7.6.2.4. Método da Contagem de D-Cubos (CDC)

Divisão recursiva de um segmento, um quadrado e um cubo, objetos Euclidianos de dimensão 1D, 2D e 3D:.

Figura 7.19 - Divisões recursivas de objetos 1D, 2D e 3D.

Tabela 7.9 - *1-cubo* (segmento reto).

Dimensão	Divisões	N _{n,1-cubos}	Regra
	1	2	2^{1}
1	2	4	2^{2}
	3	8	2^{3}

Tabela 7.10 - *2-cubo* (segmento reto).

Dimensão	Divisões	N _{n,2-cubos}	Regra
	1	4	2^{2}
2	2	16	2^{4}
	3	64	2 ⁶

Tabela 7.11 - *3-cubo* (cubo).

Dimensão	Divisões	N _{n,3-cubos}	Regra
	1	8	2^{3}
3	2	64	2 ⁶
	3	512	2 ⁹

Computação Gráfica - Vol. 2 - Cap. 7

O número de partes idênticas da divisão recursiva de um *d-cubo* é:

$$N_{n'd-cubos} = 2^{d \times n} \tag{7.32}$$

onde d é a dimensão considerada e n é o número de divisões.

A dimensão fractal é dada por:

$$DF_{n} = \frac{Log(N_{n,d-cubo})}{Log(2^{n})}$$

$$N_{n,d-cubo} \acute{e}:$$
(7.33)

$$N_{n}(i,j) = \frac{\text{inteiro} \left(Cinza _Maximo(i,j) - Cinza _\min(i,j)\right)}{s} + 1$$
(7.35)

Computação Gráfica - Vol. 2 - Cap. 7

51

Imagens	Dimensão (d)	Divisões (n)	N _n (d-cubos)	log (N _{n,d-cubos})	$\log(2^n)$	DF _n
Binárias		1	4	log (4)	$\log(2)$	2
(nenhum canal)	2	2	16	log (16)	$\log(4)$	2
		3	64	log (64)	log (8)	2
Em escala de cinza		1	8	log (8)	$\log(2)$	3
(1 canal)	3	2	64	log (64)	$\log(4)$	3
		3	512	log (512)	log (8)	3
(2 canais)		1	16	log (16)	$\log(2)$	4
	4	2	256	log (256)	$\log(4)$	4
		3	4096	log (4096)	log (8)	4
Coloridas		1	32	log (32)	$\log(2)$	5
(3 bandas)	5	2	1024	log (1024)	$\log(4)$	5
		3	32768	log (32768)	log (8)	5
Multiognostrais		1	64	log (64)	$\log(2)$	6
(agima do 2 handas)	6	2	4096	log (4096)	$\log(4)$	6
(acima de 5 Dandas)		3	262144	log (262144)	$\log(8)$	6

Figura 7.20 – Valores obtidos pelo método CDC (DF \approx 3.465) em possíveis associações de bandas para os canais RGB (4-5-6, 40-6-5, 5-4-6, 5-6-4, 6-4-5, 6-5-4).

Figura 7.21 – Mosaico de texturas naturais e resultado da segmentação com CDC.